Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity.

Identifieur interne : 000E42 ( Main/Exploration ); précédent : 000E41; suivant : 000E43

Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity.

Auteurs : Stephen L. Sturley [États-Unis] ; Tamayanthi Rajakumar [Nouvelle-Zélande] ; Natalie Hammond [Nouvelle-Zélande] ; Katsumi Higaki [Japon] ; Zsuzsa Márka [États-Unis] ; Szabolcs Márka [États-Unis] ; Andrew B. Munkacsi [Nouvelle-Zélande]

Source :

RBID : pubmed:32457038

Descripteurs français

English descriptors

Abstract

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.

DOI: 10.1194/jlr.R120000851
PubMed: 32457038
PubMed Central: PMC7328045


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity.</title>
<author>
<name sortKey="Sturley, Stephen L" sort="Sturley, Stephen L" uniqKey="Sturley S" first="Stephen L" last="Sturley">Stephen L. Sturley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Barnard College, New York, NY 10027. Electronic address: mailto:sls37@columbia.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biology, Barnard College, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rajakumar, Tamayanthi" sort="Rajakumar, Tamayanthi" uniqKey="Rajakumar T" first="Tamayanthi" last="Rajakumar">Tamayanthi Rajakumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012</wicri:regionArea>
<wicri:noRegion>Wellington 6012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammond, Natalie" sort="Hammond, Natalie" uniqKey="Hammond N" first="Natalie" last="Hammond">Natalie Hammond</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012</wicri:regionArea>
<wicri:noRegion>Wellington 6012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Higaki, Katsumi" sort="Higaki, Katsumi" uniqKey="Higaki K" first="Katsumi" last="Higaki">Katsumi Higaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Functional Genomics, Tottori University, Yonago 683-8503, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Functional Genomics, Tottori University, Yonago 683-8503</wicri:regionArea>
<wicri:noRegion>Yonago 683-8503</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marka, Zsuzsa" sort="Marka, Zsuzsa" uniqKey="Marka Z" first="Zsuzsa" last="Márka">Zsuzsa Márka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Physics, Columbia University, New York, NY 10027.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<wicri:cityArea>Department of Physics, Columbia University, New York</wicri:cityArea>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Marka, Szabolcs" sort="Marka, Szabolcs" uniqKey="Marka S" first="Szabolcs" last="Márka">Szabolcs Márka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Physics, Columbia University, New York, NY 10027.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<wicri:cityArea>Department of Physics, Columbia University, New York</wicri:cityArea>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Munkacsi, Andrew B" sort="Munkacsi, Andrew B" uniqKey="Munkacsi A" first="Andrew B" last="Munkacsi">Andrew B. Munkacsi</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012</wicri:regionArea>
<wicri:noRegion>Wellington 6012</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32457038</idno>
<idno type="pmid">32457038</idno>
<idno type="doi">10.1194/jlr.R120000851</idno>
<idno type="pmc">PMC7328045</idno>
<idno type="wicri:Area/Main/Corpus">001581</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001581</idno>
<idno type="wicri:Area/Main/Curation">001581</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001581</idno>
<idno type="wicri:Area/Main/Exploration">001581</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity.</title>
<author>
<name sortKey="Sturley, Stephen L" sort="Sturley, Stephen L" uniqKey="Sturley S" first="Stephen L" last="Sturley">Stephen L. Sturley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Barnard College, New York, NY 10027. Electronic address: mailto:sls37@columbia.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Biology, Barnard College, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rajakumar, Tamayanthi" sort="Rajakumar, Tamayanthi" uniqKey="Rajakumar T" first="Tamayanthi" last="Rajakumar">Tamayanthi Rajakumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012</wicri:regionArea>
<wicri:noRegion>Wellington 6012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammond, Natalie" sort="Hammond, Natalie" uniqKey="Hammond N" first="Natalie" last="Hammond">Natalie Hammond</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012</wicri:regionArea>
<wicri:noRegion>Wellington 6012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Higaki, Katsumi" sort="Higaki, Katsumi" uniqKey="Higaki K" first="Katsumi" last="Higaki">Katsumi Higaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Functional Genomics, Tottori University, Yonago 683-8503, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Functional Genomics, Tottori University, Yonago 683-8503</wicri:regionArea>
<wicri:noRegion>Yonago 683-8503</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marka, Zsuzsa" sort="Marka, Zsuzsa" uniqKey="Marka Z" first="Zsuzsa" last="Márka">Zsuzsa Márka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Physics, Columbia University, New York, NY 10027.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<wicri:cityArea>Department of Physics, Columbia University, New York</wicri:cityArea>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Marka, Szabolcs" sort="Marka, Szabolcs" uniqKey="Marka S" first="Szabolcs" last="Márka">Szabolcs Márka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Physics, Columbia University, New York, NY 10027.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<wicri:cityArea>Department of Physics, Columbia University, New York</wicri:cityArea>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Munkacsi, Andrew B" sort="Munkacsi, Andrew B" uniqKey="Munkacsi A" first="Andrew B" last="Munkacsi">Andrew B. Munkacsi</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012</wicri:regionArea>
<wicri:noRegion>Wellington 6012</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of lipid research</title>
<idno type="eISSN">1539-7262</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Androstenes (therapeutic use)</term>
<term>Angiotensin-Converting Enzyme 2 (MeSH)</term>
<term>Anticholesteremic Agents (therapeutic use)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Betacoronavirus (drug effects)</term>
<term>Betacoronavirus (metabolism)</term>
<term>Betacoronavirus (pathogenicity)</term>
<term>COVID-19 (MeSH)</term>
<term>Cholesterol (metabolism)</term>
<term>Coronavirus Infections (diagnosis)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Drug Repositioning (methods)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (therapeutic use)</term>
<term>Intracellular Signaling Peptides and Proteins (antagonists & inhibitors)</term>
<term>Intracellular Signaling Peptides and Proteins (genetics)</term>
<term>Intracellular Signaling Peptides and Proteins (metabolism)</term>
<term>Lysosomes (drug effects)</term>
<term>Lysosomes (metabolism)</term>
<term>Lysosomes (virology)</term>
<term>Niemann-Pick Disease, Type C (drug therapy)</term>
<term>Niemann-Pick Disease, Type C (genetics)</term>
<term>Niemann-Pick Disease, Type C (metabolism)</term>
<term>Niemann-Pick Disease, Type C (pathology)</term>
<term>Pandemics (MeSH)</term>
<term>Peptidyl-Dipeptidase A (genetics)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Pneumonia, Viral (diagnosis)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Protein Binding (MeSH)</term>
<term>Receptors, Virus (antagonists & inhibitors)</term>
<term>Receptors, Virus (genetics)</term>
<term>Receptors, Virus (metabolism)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Androstènes (usage thérapeutique)</term>
<term>Anticholestérolémiants (usage thérapeutique)</term>
<term>Antiviraux (usage thérapeutique)</term>
<term>Betacoronavirus (effets des médicaments et des substances chimiques)</term>
<term>Betacoronavirus (métabolisme)</term>
<term>Betacoronavirus (pathogénicité)</term>
<term>Cholestérol (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus (génétique)</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Hydroxychloroquine (usage thérapeutique)</term>
<term>Infections à coronavirus (diagnostic)</term>
<term>Infections à coronavirus (traitement médicamenteux)</term>
<term>Infections à coronavirus (épidémiologie)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Lysosomes (effets des médicaments et des substances chimiques)</term>
<term>Lysosomes (métabolisme)</term>
<term>Lysosomes (virologie)</term>
<term>Maladie de Niemann-Pick de type C (anatomopathologie)</term>
<term>Maladie de Niemann-Pick de type C (génétique)</term>
<term>Maladie de Niemann-Pick de type C (métabolisme)</term>
<term>Maladie de Niemann-Pick de type C (traitement médicamenteux)</term>
<term>Pandémies (MeSH)</term>
<term>Peptidyl-Dipeptidase A (génétique)</term>
<term>Peptidyl-Dipeptidase A (métabolisme)</term>
<term>Pneumopathie virale (diagnostic)</term>
<term>Pneumopathie virale (traitement médicamenteux)</term>
<term>Pneumopathie virale (épidémiologie)</term>
<term>Protéines et peptides de signalisation intracellulaire (antagonistes et inhibiteurs)</term>
<term>Protéines et peptides de signalisation intracellulaire (génétique)</term>
<term>Protéines et peptides de signalisation intracellulaire (métabolisme)</term>
<term>Repositionnement des médicaments (méthodes)</term>
<term>Récepteurs viraux (antagonistes et inhibiteurs)</term>
<term>Récepteurs viraux (génétique)</term>
<term>Récepteurs viraux (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Receptors, Virus</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cholesterol</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Receptors, Virus</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Androstenes</term>
<term>Anticholesteremic Agents</term>
<term>Antiviral Agents</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Angiotensin-Converting Enzyme 2</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Maladie de Niemann-Pick de type C</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betacoronavirus</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Niemann-Pick Disease, Type C</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Niemann-Pick Disease, Type C</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Maladie de Niemann-Pick de type C</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Betacoronavirus</term>
<term>Lysosomes</term>
<term>Niemann-Pick Disease, Type C</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Drug Repositioning</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Cholestérol</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Lysosomes</term>
<term>Maladie de Niemann-Pick de type C</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Repositionnement des médicaments</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Niemann-Pick Disease, Type C</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Maladie de Niemann-Pick de type C</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Androstènes</term>
<term>Anticholestérolémiants</term>
<term>Antiviraux</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lysosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>COVID-19</term>
<term>Humans</term>
<term>Pandemics</term>
<term>Protein Binding</term>
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Pandémies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32457038</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>03</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1539-7262</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>61</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Journal of lipid research</Title>
<ISOAbbreviation>J Lipid Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity.</ArticleTitle>
<Pagination>
<MedlinePgn>972-982</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0022-2275(20)43576-X</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1194/jlr.R120000851</ELocationID>
<Abstract>
<AbstractText>The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.</AbstractText>
<CopyrightInformation>Copyright © 2020 Sturley et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sturley</LastName>
<ForeName>Stephen L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Barnard College, New York, NY 10027. Electronic address: mailto:sls37@columbia.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rajakumar</LastName>
<ForeName>Tamayanthi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hammond</LastName>
<ForeName>Natalie</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Higaki</LastName>
<ForeName>Katsumi</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Division of Functional Genomics, Tottori University, Yonago 683-8503, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Márka</LastName>
<ForeName>Zsuzsa</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, Columbia University, New York, NY 10027.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Márka</LastName>
<ForeName>Szabolcs</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, Columbia University, New York, NY 10027.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Munkacsi</LastName>
<ForeName>Andrew B</ForeName>
<Initials>AB</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DK054320</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HL007343</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM129465</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Lipid Res</MedlineTA>
<NlmUniqueID>0376606</NlmUniqueID>
<ISSNLinking>0022-2275</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000736">Androstenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000924">Anticholesteremic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C106881">NPC1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3039-71-2</RegistryNumber>
<NameOfSubstance UI="C006261">3-beta-(2-(diethylamino)ethoxy)androst-5-en-17-one</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>97C5T2UQ7J</RegistryNumber>
<NameOfSubstance UI="D002784">Cholesterol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.23</RegistryNumber>
<NameOfSubstance UI="C000705307">ACE2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.23</RegistryNumber>
<NameOfSubstance UI="D000085962">Angiotensin-Converting Enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000736" MajorTopicYN="N">Androstenes</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000085962" MajorTopicYN="N">Angiotensin-Converting Enzyme 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000924" MajorTopicYN="N">Anticholesteremic Agents</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002784" MajorTopicYN="N">Cholesterol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058492" MajorTopicYN="N">Drug Repositioning</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052556" MajorTopicYN="N">Niemann-Pick Disease, Type C</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="Y">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ebola</Keyword>
<Keyword MajorTopicYN="Y">Niemann-Pick disease</Keyword>
<Keyword MajorTopicYN="Y">cholesterol</Keyword>
<Keyword MajorTopicYN="Y">cholesterol trafficking</Keyword>
<Keyword MajorTopicYN="Y">coronavirus disease 2019</Keyword>
<Keyword MajorTopicYN="Y">drug repurposing</Keyword>
<Keyword MajorTopicYN="Y">dyslipidemias</Keyword>
<Keyword MajorTopicYN="Y">lysosomal storage disease</Keyword>
<Keyword MajorTopicYN="Y">pandemic</Keyword>
<Keyword MajorTopicYN="Y">severe acute respiratory syndrome coronavirus 2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32457038</ArticleId>
<ArticleId IdType="pii">S0022-2275(20)43576-X</ArticleId>
<ArticleId IdType="doi">10.1194/jlr.R120000851</ArticleId>
<ArticleId IdType="pmc">PMC7328045</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2008 Aug;39(2):142-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2011 Nov 1;82(9):1234-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Feb 3;10(4):600-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25640182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014 Aug;58(8):4885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24841273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharm Sin B. 2020 May;10(5):766-788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32292689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2020 Jun 23;64(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32366720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Dec 14;92(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29046459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Nov 28;90(24):11181-11196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27707921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2014 May 1;24(9):2115-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Aug 24;477(7364):340-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2018 Nov 22;218(suppl_5):S397-S402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30010949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1997 Aug 1;234(2):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9260888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 8;286(27):23842-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2020 Dec;9(1):221-236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31987001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jun 2;165(6):1467-1478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27238017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Dec 08;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26646182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2018;419:1-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28643204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Western Pac Surveill Response J. 2015 Jul 22;6(3):68-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26668769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8722-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17522231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orphanet J Rare Dis. 2018 Apr 6;13(1):50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29625568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Sep 15;12(9):e1005840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27631986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Chem Chemother. 2006;17(5):275-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 1996 Jul;37(7):1556-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8827526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2010 Sep;36(3):646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20150207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2017 Aug 24;61(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28839081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2020 Apr 17;69(15):458-464</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32298251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2020 Mar 15;16(10):1724-1731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32226290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Aug 24;477(7364):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Jun 26;137(7):1213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19563754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Orphanet J Rare Dis. 2010 Jun 03;5:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Cent Sci. 2020 Mar 25;6(3):315-331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32226821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2020 Aug 19;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32817221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(19):10543-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chin Med J (Engl). 2020 May 5;133(9):1051-1056</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32149769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Aug 06;7(8):4385-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26287230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2020 May;34(5):6027-6037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32350928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 19;9(5):e97695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24842154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2013 Feb 1;9(2):234-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23086309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2019 Dec 11;8:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31825310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e48561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23144769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2017 Nov 28;409:91-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28923401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathogens. 2020 Jan 18;9(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31963705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jan 14;164(1-2):258-268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26771495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 Apr 6;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32250385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Virol. 1982 Jul;26(4):209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6127927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 18;6:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32194981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Immunol. 2012 Sep;279(1):78-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23099154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Feb 26;10:286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30863375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Sep 19;10(1):4276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31537798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2017 May;15(5):483-492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28286997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2020 Feb 22;12(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32098422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2018 Sep;157:68-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29981375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Apr 03;7(4):1700-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25855243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Aug;1864(8):1109-1123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31002946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2017 Aug 25;4(9):278-293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28913343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Nov 25;267(33):23797-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1429719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Mar;74(5):2288-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 2019 Jan 18;50(1):5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30658691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2013 Aug 13;4(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23943763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2018 Jan;149:75-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29155163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2001 May;114(Pt 10):1893-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11329376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jul;583(7815):282-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32218527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2018 Jan 1;412:1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29024815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2019;8(1):80-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30866762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Mar 18;17(3):404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26999125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Jul;84(Pt 7):1737-1741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12810867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 May;20(5):533-534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32087114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Nov 30;11(11):e0167428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27902765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2020 Jun;34(6):7253-7264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32367579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2016 Jan;161(1):125-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26514843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Apr;1793(4):726-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19111580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2008 Jun;118(6):2281-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Apr;92(4):418-423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31967327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005 Aug 22;2:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5620-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21436030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Endocrinol. 2016 Oct;57(3):185-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27538988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Aug;99(2):100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23648708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2019 Jan 14;11(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30646565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2020 May;61(5):601-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31615838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jun 18;382(25):2411-2418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32379955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2017 Jan 20;12(1):174-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28103683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014 Aug;58(8):4875-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24841269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lipids. 2009 Jun;44(6):477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19440746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2004 Feb 1;159(3):229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Nov 25;381(2):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18814896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microorganisms. 2020 Jan 08;8(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31936284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2013 Jun 19;5(190):190ra79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Mar 27;11(1):1620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32221306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2017 Sep;145:96-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28780424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jul 23;3(7):e2758</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18648502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2012 Nov 15;21(22):4876-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22872701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):89-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27994139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2015 May 26;6(3):e00565-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26015498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Aug;83(16):7982-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2014 Sep 26;6(9):3683-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25256397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1964;29:137-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14278460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Dec 15;261(35):16769-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3782141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 May 28;382(22):2163-2164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32283004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2018;14(8):1435-1455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29940786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):4266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):271-280.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Feb;75(4):1958-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23441171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2019 Apr 1;697:10-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29704574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18772377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jul;583(7816):459-468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32353859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2014 Aug;69(8):2123-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jun 9;7(1):3145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28600536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 25;278(17):14850-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12591922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathogens. 2019 Dec 16;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31888266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Sci (Lond). 2013 Nov;125(9):439-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23659500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Jun 17;5:296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24987391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2012 Jan 24;9:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22273177</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>Nouvelle-Zélande</li>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>New York</li>
</settlement>
<orgName>
<li>Université Columbia</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Sturley, Stephen L" sort="Sturley, Stephen L" uniqKey="Sturley S" first="Stephen L" last="Sturley">Stephen L. Sturley</name>
</region>
<name sortKey="Marka, Szabolcs" sort="Marka, Szabolcs" uniqKey="Marka S" first="Szabolcs" last="Márka">Szabolcs Márka</name>
<name sortKey="Marka, Zsuzsa" sort="Marka, Zsuzsa" uniqKey="Marka Z" first="Zsuzsa" last="Márka">Zsuzsa Márka</name>
</country>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Rajakumar, Tamayanthi" sort="Rajakumar, Tamayanthi" uniqKey="Rajakumar T" first="Tamayanthi" last="Rajakumar">Tamayanthi Rajakumar</name>
</noRegion>
<name sortKey="Hammond, Natalie" sort="Hammond, Natalie" uniqKey="Hammond N" first="Natalie" last="Hammond">Natalie Hammond</name>
<name sortKey="Munkacsi, Andrew B" sort="Munkacsi, Andrew B" uniqKey="Munkacsi A" first="Andrew B" last="Munkacsi">Andrew B. Munkacsi</name>
</country>
<country name="Japon">
<noRegion>
<name sortKey="Higaki, Katsumi" sort="Higaki, Katsumi" uniqKey="Higaki K" first="Katsumi" last="Higaki">Katsumi Higaki</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32457038
   |texte=   Potential COVID-19 therapeutics from a rare disease: weaponizing lipid dysregulation to combat viral infectivity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32457038" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021